Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae.
نویسندگان
چکیده
The motor protein cytoplasmic dynein is responsible for most of the minus-end-directed microtubule traffic within cells. Dynein contains four evolutionarily conserved AAA (ATPase associated with various cellular activities) domains that are thought to bind nucleotide; the role of nucleotide binding and hydrolysis in each of these four AAA domains has constituted an important and unresolved question in understanding dynein's mechanism. Using Saccharomyces cerevisiae cytoplasmic dynein as a model system, we mutagenized residues involved in nucleotide binding or hydrolysis in the four AAA domains and examined the ability of the mutant dyneins to mediate nuclear segregation in vivo and to bind microtubules in vitro. Our analysis shows that an AAA1 hydrolysis mutant blocks dynein function, whereas a triple AAA2/3/4 hydrolysis mutant does not, suggesting that nucleotide binding is required at only one site. We also show that nucleotide binding at AAA3, but not hydrolysis, is essential for motor activity in vivo and ATP-induced dissociation of dynein from microtubules, suggesting that this domain acts as a critical allosteric site. In contrast, mutations in AAA2 cause subtle defects in dynein function, whereas mutation in AAA4 produce no obvious defects. These results show that the four conserved dynein AAA domains have distinct functions in dynein's mechanochemical cycle.
منابع مشابه
Characterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus
Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...
متن کاملCytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains.
Cytoplasmic dynein is a homodimeric microtubule (MT) motor protein responsible for most MT minus-end-directed motility. Dynein contains four AAA+ ATPases (AAA: ATPase associated with various cellular activities) per motor domain (AAA1-4). The main site of ATP hydrolysis, AAA1, is the only site considered by most dynein motility models. However, it remains unclear how ATPase activity and MT bind...
متن کاملLis1 Acts as a “Clutch” between the ATPase and Microtubule-Binding Domains of the Dynein Motor
The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron ...
متن کاملAllosteric Communication in the Dynein Motor Domain
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational chang...
متن کاملThree-dimensional structure of cytoplasmic dynein bound to microtubules.
Cytoplasmic dynein is a large, microtubule-dependent molecular motor (1.2 MDa). Although the structure of dynein by itself has been characterized, its conformation in complex with microtubules is still unknown. Here, we used cryoelectron microscopy (cryo-EM) to visualize the interaction between dynein and microtubules. Most dynein molecules in the nucleotide-free state are bound to the microtub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 39 شماره
صفحات -
تاریخ انتشار 2004